Postprocessing Mixed Finite Element Methods For Solving Cahn-Hilliard Equation: Methods and Error Analysis
نویسندگان
چکیده
A postprocessing technique for mixed finite element methods for the Cahn-Hilliard equation is developed and analyzed. Once the mixed finite element approximations have been computed at a fixed time on the coarser mesh, the approximations are postprocessed by solving two decoupled Poisson equations in an enriched finite element space (either on a finer grid or a higher-order space) for which many fast Poisson solvers can be applied. The nonlinear iteration is only applied to a much smaller size problem and the computational cost using Newton and direct solvers is negligible compared with the cost of the linear problem. The analysis presented here shows that this technique remains the optimal rate of convergence for both the concentration and the chemical potential approximations. The corresponding error estimate obtained in our paper, especially the negative norm error estimates, are non-trivial and different with the existing results in the literatures.
منابع مشابه
Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition
Fully discrete discontinuous Galerkin methods with variable meshes in time are developed for the fourth order Cahn-Hilliard equation arising from phase transition in materials science. The methods are formulated and analyzed in both two and three dimensions, and are proved to give optimal order error bounds. This coupled with the flexibility of the methods demonstrates that the proposed discont...
متن کاملA Posteriori Error Estimates for Finite Element Approximations of the Cahn-hilliard Equation and the Hele-shaw Flow
This paper develops a posteriori error estimates of residual type for conforming and mixed finite element approximations of the fourth order Cahn-Hilliard equation ut + ∆ ` ε∆u− ε−1f(u) ́ = 0. It is shown that the a posteriori error bounds depends on ε−1 only in some low polynomial order, instead of exponential order. Using these a posteriori error estimates, we construct an adaptive algorithm f...
متن کاملA discontinuous Galerkin method for the Cahn-Hilliard equation
A discontinuous Galerkin finite element method has been developed to treat the high-order spatial derivatives appearing in the Cahn–Hilliard equation. The Cahn–Hilliard equation is a fourth-order nonlinear parabolic partial differential equation, originally proposed to model phase segregation of binary alloys. The developed discontinuous Galerkin approach avoids the need for mixed finite elemen...
متن کاملFinite Element Approximation of the Linearized Cahn-hilliard-cook Equation
The linearized Cahn-Hilliard-Cook equation is discretized in the spatial variables by a standard finite element method. Strong convergence estimates are proved under suitable assumptions on the covariance operator of the Wiener process, which is driving the equation. The backward Euler time stepping is also studied. The analysis is set in a framework based on analytic semigroups. The main part ...
متن کاملError analysis of a mixed finite element method for a Cahn-Hilliard-Hele-Shaw system
We present and analyze a mixed finite element numerical scheme for the Cahn-HilliardHele-Shaw equation, a modified Cahn-Hilliard equation coupled with the Darcy flow law. This numerical scheme was first reported in [19], with the weak convergence to a weak solution proven. In this article, we provide an optimal rate error analysis. A convex splitting approach is taken in the temporal discretiza...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of scientific computing
دوره 67 2 شماره
صفحات -
تاریخ انتشار 2016